Compression conjures apparent intelligence in new puzzle-solving AI approach

A pair of Carnegie Mellon University researchers recently discovered hints that the process of compressing information can solve complex reasoning tasks without pre-training on a large number of examples. Their system tackles some types of abstract pattern-matching tasks using only the puzzles themselves, challenging conventional wisdom about how machine learning systems acquire problem-solving abilities.
“Can lossless information compression by itself produce intelligent behavior?” ask Isaac Liao, a first-year PhD student, and his advisor Professor Albert Gu from CMU’s Machine Learning Department. Their work suggests the answer might be yes. To demonstrate, they created CompressARC and published the results in a comprehensive post on Liao’s website.
The pair tested their approach on the Abstraction and Reasoning Corpus (ARC-AGI), an unbeaten visual benchmark created in 2019 by machine learning researcher François Chollet to test AI systems’ abstract reasoning skills. ARC presents systems with grid-based image puzzles where each provides several examples demonstrating an underlying rule, and the system must infer that rule to apply it to a new example.